Solutions for quasilinear elliptic problems with critical Sobolev–Hardy exponents
نویسندگان
چکیده
منابع مشابه
ON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS
In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...
متن کاملQuasilinear Elliptic Problems with Critical Exponents and Discontinuous Nonlinearities
Using a recent fixed point theorem in ordered Banach spaces by S. Carl and S. Heikkilä, we study the existence of weak solutions to nonlinear elliptic problems −diva(x,∇u) = f (x,u) in a bounded domain Ω ⊂ Rn with Dirichlet boundary condition. In particular, we prove that for some suitable function g , which may be discontinuous, and δ small enough, the p -Laplace equation −div(|∇u|p−2∇u) = |u|...
متن کاملQuasilinear Elliptic Equations with Critical Exponents
has no solution if Ω ⊂ R , N ≥ 3, is bounded and starshaped with respect to some point, and 2∗ = 2N/(N − 2). In (P0) the nonlinear term is a power of u with the critical exponent (N + 2)/(N − 2). This terminology comes from the fact that the continuous Sobolev imbeddings H 0 (Ω) ⊂ L(Ω), for p ≤ 2∗ and Ω bounded, are also compact except when p = 2∗. This loss of compactness reflects in that the ...
متن کاملExistence of Positive Solutions for Quasilinear Elliptic Systems with Sobolev Critical Exponents
In this paper, we consider the existence of positive solutions to the following problem ⎪⎪⎨ ⎪⎪⎩ −div(|∇u|p−2∇u) = ∂F ∂u (u,v)+ ε p−1g(x) in Ω, −div(|∇v|q−2∇v) = ∂F ∂v (u,v)+ εq−1h(x) in Ω, u,v > 0 in Ω, u = v = 0 on ∂Ω, where Ω is a bounded smooth domain in RN ; F ∈C1((R+)2,R+) is positively homogeneous of degree μ ; g,h ∈C1(Ω)\{0} ; and ε is a positive parameter. Using sub-supersolution method...
متن کاملPositive Solutions of Critical Quasilinear Elliptic Problems in General Domains
We consider a certain class of quasilinear elliptic equations with a term in the critical growth range. We prove the existence of positive solutions in bounded and unbounded domains. The proofs involve several generalizations of standard variational arguments.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2004
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2004.07.011